A Neural Network-Based Image Retrieval Using Nonlinear Combination of Heterogeneous Features
نویسندگان
چکیده
* This work was supported by the Brain Korea 21 Project. AbstractIn content-based image retrieval (CBIR), content of an image can be expressed in terms of different features such as color, texture, shape, or text annotations. Retrieval based on these features can be various by the way how to combine the feature values. Most of the existing approaches assume a linear relationship between different features, and the usefulness of such systems was limited due to the difficulty in representing high-level concepts using lowlevel features. In this paper, we introduce Neural Network-based Flexible Image Retrieval (NNFIR) system, a humancomputer interaction approach to CBIR using Radial Basis Function (RBF) network to combine the values of the heterogeneous features. By using the RBF network, this approach determines nonlinear relationship between features so that more accurate similarity comparison between images can be supported. The experimental results show that the proposed approach captures the user’s perception subjectivity more precisely using the dynamically updated weights.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملA Neural Network-based Flexible Image Retrieval
In content-based image retrieval (CBIR), content of an image can be expressed in terms of different features such as color, texture, shape, or text annotations. Retrieval based on these features can be various by the way how to combine the feature values. Most of the existing approaches assume a linear relationship between different features, and the usefulness of such systems was limited due t...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Computational Intelligence and Applications
دوره 1 شماره
صفحات -
تاریخ انتشار 2001